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This paper presents a robust neural network adaptive control for polymer electrolyte

membrane (PEM) fuel cells (FCs). Since deviations between the partial pressure of hydrogen

and oxygen in PEMFCs lead to serious membrane damage, it is desirable to have a robust

and adaptive control to stabilize the partial pressure, which can significantly lengthen their

lifetime. Due to inherent nonlinearities in PEMFC dynamics and variations of the system

parameters, a linear control with fixed gains cannot control the PEMFC system properly.

Therefore, a neural network adaptive control with feedback linearization is developed for

this system. With a feedback linearization control only, the performance is deviated in the

presence of unknown dynamics and disturbances. Thus, a robust adaptive neural network

control is added to the feedback linearization control to reduce the deviation. Simulation

results show that the proposed control can significantly enhance the output performance

as well as reject the disturbances.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Environmental friendly energy sources received great atten-

tion in recent decades. Fuel cells (FCs) are one of these envi-

ronmental friendly energy devices that produce electricity,

heat, and water through a chemical reaction [1]. Being

remarkably energy efficient, emitting small amount of the

sulfur oxide and nitrogen oxide, and absolutely low noise

producing, are the main factors that make FCs as one of the

best clean source of energy.

Damage to the fuel cell membranes can cause destructive

degradation in the stack voltage and oxygen exhaustion. An

accurate air and hydrogen flow rate control can helps to keep

the Hydrogen and Oxygen pressure a desired fixed amount in
(Z. Chen).
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the fuel cell system and prevents membrane damage [1]. Due

to the nonlinear properties of chemical reactions, linear con-

trol strategies cannot control fuel cells efficiently. Therefore,

nonlinear model based control strategies are potential can-

didates for these kinds of highly nonlinear systems [2]. These

kinds of controllers need an accurate mathematical model in

their design. Several dynamic models of the polymer electro-

lyte membrane fuel cell (PEMFC) were introduced [1e9].

Purkrushpan et al. introduced a mathematical model for

PEMFC control application [1]. This model contains the flow

characteristics, compressor dynamic, manifold (anode and

cathode), membrane humidity, and reactant partial pressures.

Nonlinearities and uncertainties inherent in the load and

stack voltage, as well as the state equations make the

nonlinear control development very challenging [1,5]. A
evier Ltd. All rights reserved.
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nonlinear dynamic model for gas pressure control was intro-

duced by Na and Gou [2]. This model was applicable to control

the pressure using nonlinear control strategies, i.e., feedback

linearization control technique.

Restrepo et al. used parameter identification to introduce

an equivalent circuit basedmodel of PEMFC. In this model two

circuit were considered where, one of them described the

output voltage characteristics and the other one described the

thermal characteristics [8]. The parameter identification was

done using an evolutionary technique. In another approach,

nonlinear autoregressive with exogenous input (NARX) and

nonlinear output error (NOE) neural network structure was

used to obtain a time varying model of the stack voltage in

PEMFC which was applicable to predictive control system

design [9].

Adaptive and robust control of the PEMFC is a major

concern for many researchers and received an increasing

attention among them [10e19]. Almeida et al. introduced an

optimal artificial neural network (ANN) based control for the

PEMFC in order to obtain an approximated optimal control

[10]. Rezazadeh et al. designed a radial basis function neural

network (RBFNN) adaptive inverse controller for the PEMFC

system to control the voltage output [11]. This control scheme,

which is a combination of proportional derivative (PD) and

RBFNN, did not require any parameter identification of the

system. Therefore, it can reduce the needed experimental

data for the control design. A gain-scheduling-based adaptive

controller was designed for PEM by Farcas and Dobra [12]. This

adaptive controller was used to obtain a certain control per-

formance for themanagement of themembrane conductivity.

This controller was implemented with a 2 proportional-

integral-derivative (PID) structure. Abbaspour et al. opti-

mized the performance of the PEMFCs feedback linearization

controller via a genetic algorithm [13]. The optimization pro-

cess was performed on the linear gains of the designed

controller by the non-dominated sorting genetic algorithm II

(NSGA-II) to obtain an accurate controller.

Beirami et al. tried to optimize the oxygen excess ratio to

obtain the maximum power tracking [14]. In their design, a

feedforward fuzzy logic controller with PID feedback was

used, and the controller parameters were optimized with a

self-adaptive differential algorithm at the same time. Ou et al.

also introduced a feedforward fuzzy PID (FFPID) algorithm to

control the oxygen pressure ratio [15]. This adaptive controller

tunes the PID control gains through on-line fuzzy logic opti-

mization loop to regulate air flow rate. In another design,

Benchouia et al. introduced an adaptive fuzzy logic controller

for stack voltage control of the PEMFC [16]. Despite the ad-

vantages of the fuzzy controllers in being robust against un-

certainties, their performance is inaccurate in comparison

with model based control strategies; thus, they are more

suitable for the systems that designer does not have access to

an accurate dynamic model.

Wang et al. investigated the robustness of an H$∞
controller of the PEMFC on several platforms and concluded

that this controller can be implemented on different modules

without any modification [17]. However, it is important to

mention that the resulting controller is only optimal in the

predefined cost function and its performance in other aspects

is not guarantied. A fault tolerant control design for PEMFC
Please cite this article in press as: Abbaspour A, et al., Robust adaptive
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was introduced by Li et al. [18]. In this design, fisher discrim-

inant analysis (FDA) and support vector machine (SVM)

techniques were used to detect and isolate the faults in the

components of the PEMFC system, thus, partial failure of

sensors and actuators cannot degrade the system

performance.

In this paper, a robust adaptive neural network control

with feedback linearization is developed for the PEMFC to

stabilize the pressure of hydrogen and oxygen. The nonlinear

model of the PEMFC and the feedback linearization controller

to cancel the nonlinearity in the model and stabilize the

hydrogen and oxygen partial pressure was developed by Na

and Gou [2]. However, since the feedback linearization con-

trol is vulnerable in the presence of unknown dynamics, and

uncertainties and the gains of the linear stabilizing control

are sensitive to the output performance [12], this paper in-

troduces a robust adaptive neural network to overcome the

above issues. An adaptive neural network, which is simple in

its structure, is designed for the feedback linearization con-

trol to compensate for system uncertainties and disturbances

as well as optimize the stabilizing control to improve the

PEMFC output performance. This adaptive controller is

capable of on-line adaptive learning so that it can adjust to

variations and disturbances in system parameters. As a

result, the amount of required modeling information can be

reduced significantly. This means that with minimum mod-

ifications, this controller can be applied for different modules

of the PEMFC and the controller does not need exact details of

the model. Nonetheless, by using the adaptive neural

network controller, the need for tuning linear gains in the

feedback linearization controller is eliminated. Simulation

results have shown that this robust and adaptive design not

only improved the accuracy of the controller, but also

improved the robustness of the PEMFC against disturbances

and uncertainties.

The paper is organized as follows: Section PEMFC dynamic

model provides the PEMFC model specification, while

the proposed control design is illustrated in Section Control

design. Then, in Section Numerical simulation, the numeri-

cal simulation results are presented to demonstrate the

effectiveness of the introduced method. Finally, the

Conclusions and future work are provided in Section.
PEMFC dynamic model

PEMFCs are made up of an electrolyte membrane which is

placed in the middle of two electrodes (cathode and anode).

Only the electrolyte ions are allowed to exit, but not the

electrons. Under the potential difference between the cath-

ode and anode, the electricity can be produced by flowing

electrons over an external circuit. The electricity production

of PEM fuel cells is the outcome of an electrochemical reac-

tion between the hydrogen gas (anode) and oxygen gas

(cathode). This chemical reaction produces electricity, water,

and heat.

Fig. 1 shows the PEMFC components. As shown, hydrogen

gas enters from the anode gas diffusion layer and meets the

anode catalyst layer. Then, the catalyst helps the hydrogen

proton Hþ to separate its electrons and moves through the
neural network control for PEM fuel cell, International Journal of
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Fig. 1 e PEM fuel cell operation diagram [12].
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proton exchange membrane to the other side. At the same

time, the electrons pass through a load toward the cathode

plate where they meet the cathode gas diffusion layer. On the

other side, the oxygen molecules are separated into distinct

oxygen atoms in the presence of a catalyst on the cathode

side. Subsequently, a combination reaction occurs. Finally, an

H2O water molecule, electricity, and heat are obtained in the

reaction between one oxygen atom and two Hþ protons.

Hydrogen can be produced by a fuel processor on the anode

side which is called reformer. This reformer can be replaced

by hydrogen pressurized gas capsule. In order to use the

reformer as a hydrogen producer, a regulator for the pressure

and a purifier for obtaining purified hydrogen are needed as

well. On the cathode side, the pressure of oxygen gas must

also be controlled. Thus, an air supplier system that consists

of an air flow controller, air filter, and compressor is needed to

have a controlled oxygen pressure. Dehydration of the fuel cell

membrane should be avoided; therefore, a humidifier is

needed on both sides (anode and cathode). Moreover, a water

container, a pump, a water filter, and a heat exchanger might

be required for the heat and water level control in the fuel cell

systems [1,20,21].

According to the polarization IeV curve (Fig. 2), each cell

can produce voltage between 0 and 1 V [20,21]. Therefore, in

order to produce higher voltage, several cells can be connected

in series. As shown here, the IeV curve has a nonlinear rela-

tionship, mainly depended on cell temperature, current den-

sity, reactant pressure, and membrane humidity.

Here, the stack voltage Vst [20] can be defined as:

Vst ¼ E� Vactivation � Vohmic � Vconcentration (1)

where E is the cell thermodynamic potential, Vactivation is

voltage which is lost because of the reaction rate on the

electrode surface, Vohmic is ohmic voltage loss caused by the

proton flow resistance in the electrolyte, and Vconcentration is

voltage drop due to the decline in gas pressure or the mass of

hydrogen and oxygen transportation. These variables can be

defined with following equations [20]:
Please cite this article in press as: Abbaspour A, et al., Robust adaptive
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E ¼ N0

h
Vo þ ðRT=2FÞln

�
PH2

ffiffiffiffiffiffiffi
PO2

p .
PH2Oc

�i
(2)

Vactivation ¼ N
RT
2aF

ln

�
Ifc þ In

I0

�
(3)

Vohm ¼ NIfcr (4)

Vconcentration ¼ Nmexp
�
nIfc

�
(5)

where PO2
and PH2

are the oxygen and hydrogen pressures,

respectively, and PH2Oc is the water pressure on the cathode

side. N is the number of cells in the FC system, Vo is the open

circuit voltage of cell, R is the universal gas constant, T is the

FC temperature, F is Faraday constant, a is the charge transfer

coefficient, Ifc is the density of output current, Io is the ex-

change current density, In is the internal current density, m

and n are constants in mass transfer voltage, and r is the

resistant related to the area coefficient. A dynamic mathe-

maticalmodel of PEMFC is obtained fromRef. [2]. Dynamics on

anode side are governed by the following equations:

dPH2

dt
¼ RT

Va

	
uakaYH2

lH2
� C1Ifc �

�
uakalH2

� C1Ifc
�
FH2



(6)

dPH2Oa

dt
¼RT
Va

�
uakalH2

faPvs

PH2
þPH2Oa�faPvs

��
uakalH2

�C2Ifc
�
FH2Oa�C2Ifc

�
(7)

Dynamics related to the cathode are governed by the

following equations:

dPO2

dt
¼ RT

Vc

�
uckcYO2

lO2
� C1

2
Ifc �

�
uckcYN2

lO2
� C1

2
Ifc

�
FO2

�
(8)

dPN2

dt
¼ RT

Vc

	
uckcYN2

lO2
� uckclO2

FN2



(9)
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Fig. 2 e PEMFC polarization curve at 70C [20].
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dPH2O2

dt
¼ RT

Vc

264uckclO2

fcPvs

PO2
þ PN2

þ PH2Oc � fcPvs
þ C1Ifc��

uckclO2
þ C1Ifc þ C2Ifc

�
FH2Oc þ C2Ifc

375 (10)

where the anode variables are denoted with a subscript a; the

cathode variables are denoted with a subscript c; ua and uc are

the flow rates of hydrogen and oxygen gases,respectively,

which are used as control input in the proposed system; ka and

kc are conversion factors; YH2
, YO2

, and YN2
are the hydrogen,

oxygen, and nitrogen initialmole fractions, which are set to be

0.99, 0.21, and 0.79, respectively; lO2
is the ratio of the oxygen

supplied to the cathode; lH2
is the ratio of hydrogen supplied to

the anode; fa and fc are the associated humidity on the

cathode and anode sides, respectively; Pvs is the saturation

pressure, which can be obtained from thermodynamics ta-

bles; FH2
, FH2Oa , FO2

, FN2
, and FH2Oc are the fractions that are

defined to simplify equations (6e10) [2]:

FO2
¼ PO2

PO2
þ PN2

þ PH2Oc

; FH2
¼ PH2

PH2
þ PH2Oa

;

FN2
¼ PN2

PO2
þ PN2

þ PH2Oc

; FH2Oa ¼
PH2Oa

PH2
þ PH2Oa

FH2Oc ¼
PH2Oc

PO2
þ PN2

þ PH2Oc

(11)

Control design

In this section, the control system proposed for the PEMFC

system is introduced and illustrated.

Feedback linearization control technique

Since the proposed control structure is mainly based on the

feedback linearization control technique, the basic
Please cite this article in press as: Abbaspour A, et al., Robust adaptive
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principles of the feedback linearization controller are pro-

vided here to clarify the control design. In this technique, by

using feedback control signal the inherent nonlinear dy-

namic will be removed and concurrently a desired linear

system response will be achieved [22]. In order to illustrate

the structure of the feedback linearization method, consider

an nth order and affine nonlinear system with m input rep-

resented by:

_x ¼ fðxÞ þ GðxÞu;
y ¼ hðxÞ (12)

where the system can be separated based on their de-

pendency on control inputs with f(.) and G(.). f(.) is the matrix

function related to variables that are depended on control

input (u), and G is an n � m control effectiveness matrix

function that is related to u. To obtain such affine relation (12),

consecutive differentiations of system output should be done

until a linear relationship between the control input and the

system output appears [22]. Now by assuming h(x) ¼ x, in the

first derivative of the output y a clear affine relation for u is

obtained.

_y ¼ _x ¼ fðxÞ þ GðxÞu (13)

This linear relation can be applied (if G(x)s0) by choosing

u ¼ GðxÞ�1½ _x� fðxÞ� (14)

Finally, by replacing the system dynamics with the desired

one, yields

u ¼ GðxÞ�1
h
xd
_ � fðxÞ

i
(15)

where the subscript d denotes the desired dynamic. These

desired dynamics can be obtained by linear controllers, such

as PD, PI, or PID.
neural network control for PEM fuel cell, International Journal of
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PEMFC feedback linearization control design

This section explains the feedback linearization control

design for PEMFC air supply developed by Na [2]. The feedback

linearization control design for PEMFC air supply is obtained

from themodel described by (6-10). In this study, the feedback

linearization controller is designed to control the oxygen and

hydrogen pressures. In this design, the stack current is

considered as a disturbance to the PEMFC system [6]. The

nonlinear affine dynamic in presence of disturbances can be

presented as:

_x ¼ fðxÞ þ gðxÞuþ pðxÞd
y ¼ hðxÞ (16)

where x is the state vector, u the input or control vector, and

f(x) and g(x) are the functions that separates state parameters

related to u. The d denotes the disturbance variables; p(x) is the

dimensional vector field of the disturbance, and h(x) is the

system output. Regarding (6-10), the specified outputs and the

disturbance, and dividing the control inputs, the parameter of

PEMFC nonlinear model involved in the air supply system

presented as

gðxÞ ¼

266664
RTlH2

Va

�
kaYH2

� kaFH2

�
0

0
RTlO2

Vc
ðkcÞYO2

� kcYN2
FO2

377775;

X ¼

2666666664

PH2

PH2Oa

PO2

PN2

PH2Oc

3777777775
;U ¼

"
ua

uc

#
;Y ¼

"
PH2

PO2

#
;pðxÞ ¼ RT

266664
�C1

Va
þ C1

Va
FH2

� C1

2Vc
þ C1

2Vc
FO2

377775
d ¼ Ifc; fðxÞ ¼ 0

(17)

Now, the nonlinear control law for the multiple-input-

multiple-output (MIMO) nonlinear PEMFC system can be

extracted from (17). The disturbance in (17) can be used in the

control design, if there is a condition to measure the distur-

bance. Since the output current Ifc is measurable, the

mentioned condition is satisfied. Therefore, the feedback

linearization control law can be obtained as

u ¼ g�1ðxÞ
��

_PH2D

_PO2D

�
� pðxÞd

�
(18)

Considering that y1
_ ¼ PH2

_ and y2
_ ¼ PO2

_ , in order to guar-

antee that PH2
and PO2

are settled to the desired values (in at-

mosphere) of PH2D and PO2D, a stabilizing linear controller is

required.
Stabilizing linear controller

In this subsection, linear stabilizing control for PEMFC devel-

oped by Na [2] is introduced. The stabilizing controller design

is based on the pole-placement technique [23]. This section

provides the pole-placement principle of designing a stabi-

lizing controller. The new control inputs are given by
Please cite this article in press as: Abbaspour A, et al., Robust adaptive
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�
v1

v2

�
¼

�
_y1d � k11e1
_y2d � k21e2

�
(19)

where e1 ¼ y1�y1d, and e2 ¼ y2�y2d.

Despite the fact that the nonlinear PEMFC system is pre-

cisely linearized by feedback linearization, variation of the

parameters can cause degradation in the control perfor-

mance, particularly when the load varies. Thus, to avoid this

degradation, (19) is modified with adding two integral in the

closed-loop system [2,24]:

�
v1

v2

�
¼

2664 _y1d � k11e1 � k12

Z
e1dt

_y2d � k21e2 � k22

Z
e2dt

3775 (20)

From (19), the error dynamics can be extracted:

e€1 þ k11e1
_ þ k12e1 ¼ 0;

e€2 þ k21e2
_ þ k22e2 ¼ 0

(21)

The stabilizing controller can be designed by properly

selecting the roots of ‘s’ in s2 þ k11s þ k12 and s2 þ k12s þ k22.

Furthermore, the overshoots can beminimized by considering

the following conditions: k2
11 � 4k12 and k2

21 � 4k22 [23,24].
Adaptive neural network design

The feedback linearization control method suffers from in-

accuracy in the system modeling and uncertainties. Here, a

mathematical proof is provided to demonstrate that this

method is vulnerable against un-modeled dynamics and un-

certainties. Consider (12) with the uncertainties term (Df,DG).

_x ¼ fðxÞ þ DfðxÞ þ ðGðxÞ þ DGðxÞÞu (22)

Assuming that this system describes the actual system, by

applying feedback linearization to it, the uncertainties parts

are unknown to the controller (u ¼ G�1(x)(v�f(x)), _x ¼ v ), and

by applying this input to the system we have:

_x ¼ fðxÞ þ DfðxÞ þ ðGðxÞ þ DGðxÞÞG�1ðxÞðv� fðxÞÞ
¼ DfðxÞ � DGðxÞG�1ðxÞfðxÞ þ �

In�n þ DGðxÞG�1ðxÞ�v (23)

where In�n is an n � n identity matrix. As can be seen, the

linear relation of ( _x ¼ v ) can only be obtained when

Df(x) ¼ DG(x) ¼ 0. Otherwise, in the presence of uncertainties,

the system can no longer be considered linear, and this may

degrade the feedback linearization control performance. To

tackle this problem, this paper suggests using an adaptive

neural network (NN) in the feedback linearization structure.

Basically, it is demonstrated that an NN is capable of

approximating extremely nonlinear and uncertain systems

within the needed precision [23]. In this section, an online

learning NN is used as an adaptive control element (uad) in the

feedback linearization control. This NN structure has been

used for designing flight controller in several research studies

[26e28]. Here, in this paper we designed a three layer neural

network because of its computational feasibility and its

simplicity for the application. The proposed NN structure is

developed to estimate the dynamic model error of PEMFC

system.
neural network control for PEM fuel cell, International Journal of
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A three layer adaptive NN signal can be presented by Ref.

[25].

uad ¼ cWs
� bVT

m
�

(24)

where V and W are the weight matrices in the first and third

layer, respectively. As Fig. 3 shows, this two weighting

matrices join the first and the third layer together. s is the

activation function, and m is the neural network input [25].

cW_ ¼ �GW

h�bs � s0 bVT
m
�
eTPþ kejjejj bVi

(25)

bV_ ¼ �GV

h
meTPWT dsigma

0 þ kejjejj bVi
(26)

sðzÞ ¼ 	
1;s1ðz1Þ;…; sn2

�
zn2

�
T
2Rn2þ1 (27)

sðzÞ ¼ 	
1; xT


T
(28)

where GW and GV are the learning coefficient gains, e is the

model dynamic error, and P is a diagonal positive definite

matrix that can be extracted from the Lyapunov function [22]:

ATPþ PA ¼ �Q (29)

whereA is Hurwitz and for any Q > 0, a unique P > 0 exists. s0 is

the partial derivative of s with respect to z ¼ bVT
m , and the

scalar functions si are sigmoid activation functions that

represent the “firing” characteristics of the neuron, as follows:
Fig. 3 e Structure of three-layer NN [25].

Please cite this article in press as: Abbaspour A, et al., Robust adaptive
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bs0 ¼ ds

dz






z¼bVT

m

¼

2666666664

0 … 0

ds1

dz1
… 0

« 1 «

0 …
dsn2

dzn2

3777777775
2Rðn2þ1Þ�n1 (30)

siðziÞ ¼ 1
1þ e�aizi

; i ¼ 1; 2;…;n2: (31)

where ai are activation potential factors and they should be

normally distinct values for each neuron. The structure of NN

can be seen in Fig. 3. In this NN structure we have two inputs

and one output where the input of NN are the value of the

controlled parameter and the error of control parameter. The

output of neural network is a control signal which is added to

the feedback signal to compensate for the nonlinearities and

improve the control accuracy.
Numerical simulation

In this paper, a robust neural network adaptive controller is

introduced to overcome problems associated with the limited

knowledge of the PEMFC dynamic model. Fig. 4 presents an

overall view of the designed controller, this controller is con-

sisted of a feedback linearization controller, two PI controller

to tuned the feedback linearized system, and two NN struc-

ture to adapt the system with nonlinearities, uncertainties

and disturbances As previously mentioned, the feedback

linearization control is vulnerable when facing disturbances

and uncertainties. Thus, three scenarios are considered to

evaluate the performance of proposed controller: 1) The

controller is examined in a normal condition. 2) We intro-

duced an immeasurable disturbance into the oxygen and

hydrogen partial pressure (Fig. 10) of the system to examine

our proposed design. 3) Uncertainties in hydrogen and oxygen

pressure are added to system for checking the controller

robustness. All these three scenarios are done in three con-

trollers: The proposed adaptive controller, the feedback line-

arization controller, and the linear proportional integral (PI)

controller which are denoted in the figures with NN adaptive

control, nonlinear control, and linear control, respectively.

Since the disturbances and uncertainties were immeasurable,

the feedback linearization control did not use any information

from the disturbance. In this section, the results of simula-

tions are provided to demonstrate the advantages of proposed

design. The objective in this design is to control the hydrogen

and oxygen partial pressure with desired values (3 atm). Pa-

rameters in the stabilizer controller (26) were selected as

k12 ¼ k22 ¼ 5 and k11 ¼ k21 to establish the mentioned condi-

tion, while the NN learning coefficient gains were tuned by

genetic algorithm to obtain the optimal performance [28]:

Gw1 ¼ 0:354;Gv1 ¼ 4:998;Gw2 ¼ 0:08215;Gv2 ¼ 0:1962:

Load profile details, which were used for evaluation of the

controller, are depicted in Fig. 5, where the load resistances

were varied from 0.145 to 4.123 U during the simulation

period, which introduced a measurable disturbance in Ifc. In
neural network control for PEM fuel cell, International Journal of
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Fig. 4 e Overview of the designed controller.

Fig. 5 e Load variation profile.

Table 1 e PEMFC parameters.

Parameter Value Description

R 8.314 Universal gas constant [J/mol-k]

F 96,485 Faraday constant [C/mole]

T 353 Fuel cell temperature [K]

V0 1.028 Open cell voltage

N 30 Cell number

Ixz 0.75 XZ Plane Inertia Moment

a 0.5 Coefficient of charge transfer

m 2.11 � 10�5 Mass transfer voltage [V]

n 2.45 � 10�3 Mass transfer voltage [cm2 mA�1]

r 2.45 � 10�4 electrical resistance [kUcm2]

Va 0.005 Anode volume [m3]

Vc 0.01 Cathode volume [m3]

ka 7.034 � 10�4 Anode conversion factor

kc 7.036 � 10�4 Cathode conversion factor

Pvs 32 Saturation pressure [kPa]

i n t e r n a t i o n a l j o u r n a l o f h yd r o g e n e n e r g y x x x ( 2 0 1 6 ) 1e1 1 7
this simulation, the stack temperature was assumed to be

constant at 353 K. Then the numerical simulations are done

using a core i7 desktop computer with MATLAB SIMULINK

software. The characteristics of the PEMFC system which is

used in this paper is shown on Table 1.

Normal condition

In this part, the simulation results for air flow control in PEM

fuel cell in normal condition are presented. Normal condition

means that system parameters do not have any uncertainties

and systemwould not face any immeasurable disturbance. By

considering this assumption, the simulations are done and

the results are presented on Figs. 6e9. The controller was

designed to keep the hydrogen and oxygen pressure control

around the desired value (3 atm), and as it can be seen the

proposed adaptive controller and the feedback linearization

controller have not significant difference in normal condition.

From Figs. 6e9 it is clear that the feedback linearization

controller and adaptive controller have better performance in

comparison with linear PI controller (e.g. eliminating un-

dershoots and overshoots in the pressure control).
Please cite this article in press as: Abbaspour A, et al., Robust adaptive
Hydrogen Energy (2016), http://dx.doi.org/10.1016/j.ijhydene.2016.09.
Figs. 8 and 9 show the variations of hydrogen and oxygen

flow rates, respectively. These flow rates were used as the

control inputs of the designed control system, and as it can be

seen, the adaptive and feedback linearization controllers use
neural network control for PEM fuel cell, International Journal of
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Fig. 6 e Hydrogen pressure control performance in normal

condition.

Fig. 7 e Oxygen pressure control performance in normal

condition.

Fig. 8 e Hydrogen flow rate variations in normal condition.

Fig. 9 e Oxygen flow rate variation in normal condition in

normal condition.
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control inputs comparably lesser. Control effort has a direct

relation to control input (
R
u2dt ), and it is an important factor

in designing controllers. Thus, the feedback linearization

controller and the proposed adaptive controller are success-

fully reduced the control effort up to 72 percent in comparison

with PI controller. Despite the fact that load control was not
Please cite this article in press as: Abbaspour A, et al., Robust adaptive
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the object of this control design, Fig. 10 shows that all three

controller can handle the load variation in the system.

Disturbance rejection

In this part of simulation we analyzed the system perfor-

mance in presence of disturbance. We wanted to examine the

disturbance rejection ability of our proposed controller. In

contrast with the Ifc disturbance, this disturbance cannot be

measured in the feedback signal, so, in this paper we called it

immeasurable disturbance. Fig. 11 shows the immeasurable

disturbance inserted to PEM fuel cell Hydrogen and Oxygen

pressure.

Based on Figs. 12 and 13 the proposed controller has 6

percent error in presence of large disturbances while the

feedback linearization and PI controllers have more than 16

percent error in pressure control. Figs. 14 and 15 show the

control input of the PEMFC system to control the airflow. In

the simulations the actuator model (valve) is modeled, so the

simulation results can be achievable in the experimental

tests. Fig. 16 shows that the NN learning weight matrices

converged during the simulation time. These coefficients are

tuned during the on-line adaptation. After overcoming the

nonlinearities and disturbances in the system, if the learning

weight matrices converge to zero, it means that the neural

network successfully did its task. In other words, neural

network successfully compensated for uncertainties and dis-

turbances in the system. As it can be seen, these matrices

converged to zero after the disturbances disappeared. This

figure also verifies that the NN can compensate both immea-

surable (Fig. 11) and measurable (d ¼ Ifc) disturbances effec-

tively. In addition, in comparison with the feedback

linearization method, NN helped to decrease the computation

time up to 41 percent.

Robustness against uncertainties

In this section, the robustness of proposed designed is

compared with linear PI and feedback linearization controller.

Uncertainties which are unknown to system dynamic are

inserted to the dynamic system:
neural network control for PEM fuel cell, International Journal of
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Fig. 10 e Fuel cell power production under variation of load.

Fig. 11 e The disturbance inserted to the O2 an H2

pressures.

Fig. 12 e Hydrogen pressure control in presence of

immeasurable disturbance.

Fig. 13 e Oxygen pressure control in presence of

immeasurable disturbance.

Fig. 14 e Hydrogen flow rate variations in disturbance

condition.
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_X ¼ gðxÞuþ pðxÞdþ 2Df ðx; tÞ (32)

where Df can be defined as

Df ðx; tÞ ¼ b1 þ b2cosð2tÞx2
1x

2
3

a1 þ a2sinðtÞ þ a3x2
1 þ a4x2

2

(33)

where a1 and a2 are unknown constants which satisfy these

inequalities: a1 > a2 þ 1 > 0, a3 � 1 and a4 � 1. Considering
Please cite this article in press as: Abbaspour A, et al., Robust adaptive
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mentioned inequalities, the following values are used in the

simulation: a1 ¼ 2, a2 ¼ 0.5, a3 ¼ a4 ¼ 1.5, b1 ¼ 1, b2 ¼ �2. As it

was already predicted, Figs. 17 and 18 demonstrate that the

proposed adaptive controller have better performance than

feedback linearization in presence of uncertainties. In Fig. 17,

it can be seen that the proposed controller decreased the
neural network control for PEM fuel cell, International Journal of
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Fig. 15 e Oxygen flow rate variations in disturbance

condition.

Fig. 16 e NN weight matrix (jjWjj, jjVjj) versus time.

Fig. 18 e Oxygen pressure control in a PEM fuel cell system

with parameter uncertainties.

Fig. 19 e Hydrogen flow rate variations in uncertainties

condition.
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oscillation 20 percent in comparison with the feedback line-

arization controller. Fig. 18 shows that the proposed controller

oscillation is 40 percent less than the feedback linearization

controller It can be also seen in that linear PI controller is not

capable of controlling the PEMFC airflow in presence of pa-

rameters uncertainties. Figs. 19 and 20 show the PEMFC con-

trol inputs. These figures show that the proposed design has

less amplitude and less oscillation in control input actuators,
Fig. 17 e Hydrogen pressure control in a PEM fuel cell

system with parameter uncertainties.

Fig. 20 e Oxygen flow rate variations in uncertainties

condition.

Please cite this article in press as: Abbaspour A, et al., Robust adaptive
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so, it can be concluded that the proposed adaptive controller

has better performance even in the control effort.

Conclusion and future work

In this paper, a new approach is introduced to control PEM fuel

cells, whereby an adaptive neural network is used to increase
neural network control for PEM fuel cell, International Journal of
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the accuracy and robustness of the feedback linearization

controller. Consequently, the need to have an accurate dy-

namic model, which is a requirement for a feedback lineari-

zation controller, is diminished. According to simulation

results, the introduced neural networks, by adapting its

behavior from online learning, successfully compensate for

the unknown disturbances and parameter uncertainties on

the control performance. This improvement in the control

performance prolongs the life of PEMFCs by preventing

membrane damage.

In the future, this studywill be continued in two directions.

First, we will try to demonstrate the advantages of proposed

design in experimental tests by implementing the designed

controller on a real PEMFC system. Second, we will develop

the PEMFC model and control the PEMFC on other system

outputs (voltage, current, etc.) at the same time.
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