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A Control-Oriented and Physics-Based Model
for Ionic Polymer–Metal Composite Actuators
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Abstract—Ionic polymer–metal composite (IPMC) actuators
have promising applications in biomimetic robotics, biomedical
devices, and micro/nanomanipulation. In this paper, a physics-
based model is developed for IPMC actuators, which is amenable
to model reduction and control design. The model is represented as
an infinite-dimensional transfer function relating the bending dis-
placement to the applied voltage. It is obtained by exactly solving
the governing partial differential equation in the Laplace domain
for the actuation dynamics, where the effect of the distributed sur-
face resistance is incorporated. The model is expressed in terms of
fundamental material parameters and actuator dimensions, and is
thus, geometrically scalable. To illustrate the utility of the model
in controller design, an H∞ controller is designed based on the re-
duced model and applied to tracking control. Experimental results
are presented to validate the proposed model and its effectiveness
in real-time control design.

Index Terms—Electroactive polymers, ionic polymer–metal
composite (IPMC) actuators, model-based control design, physics-
based model.

I. INTRODUCTION

IONIC polymer–metal composites (IPMCs) form an impor-
tant category of electroactive polymers (also known as ar-

tificial muscles) and have built-in actuation and sensing capa-
bilities [1], [2]. An IPMC sample typically consists of a thin
ion-exchange membrane (e.g., Nafion), chemically plated on
both surfaces with a noble metal as electrode [3]. Transport of
hydrated cations and water molecules within an IPMC under
an applied voltage and the associated electrostatic interactions
lead to bending motions of the IPMC, and hence, the actuation
effect. Fig. 1 illustrates the mechanism of the IPMC actuation.
Because of their softness, resilience, biocompatibility, and the
capability of producing large deformation under a low action
voltage, IPMCs are very attractive for many applications in the
fields of biomedical devices and biomimetic robots [4]–[10].
Microfabrication of IPMC [11] has also been reported, which
extends IPMCs applications into micro- and nanomanipulation
domains.

A faithful and practical model is desirable for real-time con-
trol of this novel material in various potential applications.
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Fig. 1. Illustration of IPMC actuation mechanism.

Current modeling work can be classified into three categories
based on their complexity levels. Based purely on the empirical
responses, black-box models, e.g., [12] and [13], offer mini-
mal insight into the governing mechanisms within the IPMC.
While these models are simple in nature, they are often sample-
dependent and not scalable in dimensions. As a more detailed
approach, the gray-box models, e.g., [14]–[16], are partly based
on physical principles while also relying on empirical results to
define some of the more complex physical processes. In the most
complex form, white-box models with partial differential equa-
tions (PDEs), e.g., [17]–[22], attempt to explain the underlying
physics for the sensing and actuation responses of IPMCs, but
they are not practical for real-time control purposes. In particu-
lar, Farinholt derived the impedance response for a cantilevered
IPMC beam under step and harmonic voltage excitations [20].
The derivation was based on a linear, one-dimensional PDE gov-
erning the internal charge dynamics, which was first developed
by Nemat-Nasser and Li for studying the actuation response of
IPMCs [18].

In this paper, an explicit control-oriented yet physics-based
actuation model for IPMC actuators is presented. The model
combines the seemingly incompatible advantages of both the
white-box models (capturing key physics) and the black-box
models (amenable to control design). The proposed modeling
approach provides an interpretation of the sophisticated physical
processes involved in IPMC actuation from a systems perspec-
tive. The model development starts from the same governing
PDE as in [18] and [20] that describes the charge redistribution
dynamics under external electrical field, electrostatic interac-
tions, ionic diffusion, and ionic migration along the thickness
direction. The model extends the research in [18] and [20] by
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incorporating the effect of distributed surface resistance, which
is known to influence the actuation behavior of IPMCs [23],
[24]. Moreover, by converting the original PDE into the Laplace
domain, an exact solution is obtained, leading to a compact, an-
alytical model in the form of infinite-dimensional transfer func-
tion. The model can be further reduced to low-order models,
which again carry physical interpretations and are geometrically
scalable.

Experiments have been conducted to validate the proposed
dynamic model for IPMC actuators in a cantilevered configura-
tion. Good agreement, both in magnitude and in phase, has been
achieved between the experimental measurement and the model
prediction for the impedance response from 0.02 to 100 Hz,
and for bending response from 0.02 to 20 Hz. The results show
that considering the surface resistance leads to more accurate
predictions. The geometric scalability of the actuator model has
also been confirmed without retuning of the identified physical
parameters.

An example is further provided to illustrate the use of the
proposed model for controller development, where an H∞ con-
troller is designed based upon a reduced model. Experimental
results on tracking control have shown that model-based H∞
controller ensures internal stability and tracking precision in the
presence of measurement noises and model uncertainties while
taking into account control effort consumption.

The remainder of the paper is organized as follows. The
governing PDE is reviewed in Section II. In Section III, the
electrical impedance model for IPMC actuator is derived by
exactly solving the PDE, with and without considering the sur-
face resistance. This lays the groundwork for deriving the full
actuation model, which is described in Section IV. Model re-
duction is discussed in Section V. Experimental validation of
the proposed model is presented in Section VI. Model-based
H∞ controller design and its real-time implementation are re-
ported in Section VII. Finally, concluding remarks are provided
in Section VIII.

II. GOVERNING PDE

The governing PDE for charge distribution in an IPMC was
first presented in [18] and then used by Farinholt [20] for inves-
tigating the actuation and sensing response. Let D, E, φ, and ρ
denote the electric displacement, the electric field, the electric
potential, and the charge density, respectively. The following
equations hold:

E =
D
κe

= −∇φ (1)

∇ · D = ρ = F (C+ − C−) (2)

where κe is the effective dielectric constant of the polymer, F
is Faraday’s constant, and C+ and C− are the cation and anion
concentrations, respectively. The continuity equation is given
by

∇ · J = −∂C+

∂t
(3)

Fig. 2. Geometric definitions of an IPMC cantiliver beam.

where J is the ion flux vector. Since the thickness of an IPMC
is much smaller than its length or width, one can assume that,
inside the polymer, D, E, and J are all restricted to the thickness
direction (x-direction). This enables one to drop the boldface
notation for these variables. The ion flux consists of diffusion,
migration, and convection terms

J = −d

(
∇C+ +

C+F

RT
∇φ +

C+∆V

RT
∇p

)
+ C+v (4)

where d is the ionic diffusivity, R is the gas constant, T is the
absolute temperature, p is the fluid pressure, v is the free solvent
velocity field, and ∆V is the volumetric change. Considering
Darcy’s law and ignoring the nonlinear terms in (4) (see [25]
for justification), the PDE for charge density can be derived as

∂ρ

∂t
− d

∂2ρ

∂x2 +
F 2dC−

κeRT

(
1 − C−∆V

)
ρ = 0. (5)

Nemat-Nasser and Li [18] assumed that the induced stress is
proportional to the charge density

σ = α0ρ (6)

where α0 is the coupling constant.
Farinholt [20] investigated the current response of a can-

tilevered IPMC beam when the base is subject to step and har-
monic actuation voltages. A key assumption is that the ion flux
at the polymer/metal interface is zero. This assumption, which
serves as a boundary condition for (5), leads to(

∂3φ

∂x3 − F 2C−

κeRT

(
1 − C−∆V

) ∂φ

∂x

)
|x=±h = 0. (7)

While the work in [20] represents an important progress in IPMC
modeling, it cannot be used for model-based controller design.
The latter is the main motivation of this paper.

III. ELECTRICAL IMPEDANCE MODEL

From (6), the stress induced by the actuation input is directly
related to the charge density distribution ρ. Therefore, as a first
step in developing the actuation model, we will derive the elec-
trical impedance model in this section. While the latter is of
interest in its own right, one also obtains the explicit expression
for ρ as a byproduct of the derivation.

Consider Fig. 2, where the beam is clamped at one end (z = 0)
and is subject to an actuation voltage producing the tip displace-
ment w(t) at the other end (z = L). The neutral axis of the
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beam is denoted by x = 0, and the upper and lower surfaces are
denoted by x = h and x = −h, respectively.

To ease the presentation, define the aggregated constant

K
�
=

F 2dC−

κeRT

(
1 − C−∆V

)
. (8)

Performing Laplace transform for the time variable of ρ(x, z, t)
(noting the independence of ρ from the y coordinate), one con-
verts (5) into the Laplace domain

sρ (x, z, s) − d
∂2ρ (x, z, s)

∂x2 + Kρ (x, z, s) = 0 (9)

where s is the Laplace variable. Define β(s) such that β2 =
(s + K)/d. With an assumption of symmetric charge distribu-
tion about x = 0, a generic solution to (9) can be obtained as

ρ(x, z, s) = 2c2(z, s) sinh (β(s)x) (10)

where c2(z, s) depends on the boundary condition of the PDE.
Using (10) and the field equations (1) and (2), one can derive
the expressions for the electric field E and then for the electric
potential φ in the Laplace domain

E(x, z, s) = 2c2(z, s)
cosh (β(s)x)

κeβ(s)
+ a1(z, s) (11)

φ(x, z, s) = −2c2(z, s)
sinh (β(s)x)

κeβ2(s)
− a1(z, s)x + a2(z, s)

(12)

where a1(z, s) and a2(z, s) are appropriate functions to be de-
termined based on the boundary conditions on φ. Two differ-
ent boundary conditions are discussed next, one ignoring the
surface electrode resistance and the other considering the re-
sistance. In both cases, it will be shown that the final actua-
tion current is proportional to the applied voltage input V (s),
and thus, a transfer function for the impedance model can be
derived.

A. Model Ignoring the Surface Resistance

First consider the case where the surface electrodes are per-
fectly conducting, as was assumed by Farinholt [20]. The elec-
tric potential is uniform across both surfaces x = ±h, and with-
out loss of generality, the potential is set to be

φ (±h, z, s) =
±V (s)

2
. (13)

Combining (12) and (13) with (7), one can solve for a1(z, s),
a2(z, s), and c2(z, s), and then obtain E(h, z, s) from (11)

E (h, z, s) = −V (s)
2h

γ (s) (s + K)
(sγ (s) + K tanh (γ (s)))

(14)

where γ(s)
�
= β(s)h. The total charge is obtained by integrating

the electrical displacement D on the boundary x = h

Q(s) =
∫ W

0

∫ L

0
D(h, z, s)dz dy =

∫ W

0

∫ L

0
κeE(h, z, s)dz dy.

(15)

Fig. 3. Illustration of the IPMC impedance model with surface resistance.

Plugging (14) into (15), one can derive Q(s), which is linear
with respect to the external stimulus V (s). The actuation current
i(t) is the time-derivative of the charge Q(t), and hence, I(s) =
sQ(s) in the Laplace domain. The impedance is then derived as

Z1 (s) =
V (s)
I (s)

=
s + K(tanh (γ (s))/γ (s))

Cs (s + K)
(16)

where C = κeWL/(2h) can be regarded as the capacitance of
the IPMC.

B. Model Considering Distributed Surface Resistance

The surface electrode of an IPMC typically consists of aggre-
gated nanoparticles formed during chemical reduction of noble
metal salt (such as platinum salt) [3]. The surface resistance
is thus nonnegligible and has an influence on the sensing and
actuation behavior of an IPMC [23]. In this paper, the effect of
distributed surface resistance is incorporated into the impedance
model, as illustrated in Fig. 3. Let the electrode resistance per
unit length be r1 in z direction and r2 in x direction. One can
further define these quantities in terms of fundamental physical
parameters: r1 = r′1/W , r2 = r′2/W , with r′1 and r′2 represent-
ing the surface resistance per {unit length · unit width} in z and
x directions, respectively. In Fig. 3, ip(z, s) is the distributed
current per unit length going through the polymer due to the
ion movement, ik (z, s) represents the leaking current per unit
length, and is(z, s) is the surface current on the electrodes. Rp

denotes the through-polymer resistance per unit length, which
can be written as Rp = R′

p/W , with R′
p being the polymer resis-

tance per {unit length · unit width}. Note that by the continuity
of current, the current is(z, s) on the top surface equals that on
the bottom surface but with an opposite direction. The surface
current is(0, s) at z = 0 is the total actuation current i(s).

The following equations capture the relationships between
is(z, s), ip(z, s), ik (z, s), φ±(z, s):

∂φ±(z, s)
∂z

= ∓ r′1
W

is(z, s) (17)

∂is(z, s)
∂z

= −(ip(z, s) + ik (z, s)). (18)
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From the potential condition at z = 0, i.e., φ±(0, s) =
±V (s)/2, the boundary conditions for (12) are derived as

φ(±h, z, s) = φ±(z, s) ∓ ip(z, s)r′2/W. (19)

With (17) and (19), one gets

φ (±h, z, s) =
±V (s)

2
∓

∫ z

0

r′1
W

is (τ, s) dτ − r′2
W

ip (z, s) .

(20)
Combining (20) with (12), one can solve for the functions
a1(z, s) and a2(z, s) in the generic expression for φ(x, z, s).
With consideration of the boundary condition (7), one can solve
for c2(z, s). With a1(z, s), a2(z, s), and c2(z, s), one obtains
E(h, z, s) from (11)

E (h, z, s) = −φ (h, z, s)
h

γ (s) (s + K)
γ (s) s + K tanh (γ (s))

. (21)

Define the actuation current along the negative x-axis direction
to be positive. The current ip due to the ion movement can be
obtained as

ip (z, s) = −sWD (h, z, s) = −sWκeE (h, z, s) . (22)

The leaking current ik can be obtained as

ik (z, s) =
φ+ (z, s) − φ− (z, s)

R′
p/W

. (23)

With (21)–(23), one can solve the PDE (18) for the surface
current is(z, s) with the boundary condition is(L, s) = 0. The
total actuation current I(s) = is(0, s) can be obtained, from
which the transfer function for the impedance can be shown to
be

Z2 (s) =
V (s)
I (s)

=
2
√

B (s)
A (s) tanh (

√
B (s)L)

(24)

where

A (s)
�
=

θ (s)
(1 + r′2θ (s) /W )

+
2W

R′
p

(25)

B (s)
�
=

r′1
W

A (s) (26)

θ (s)
�
=

sWκeγ (s) (s + K)
h (sγ (s) + K tanh (γ (s)))

. (27)

See Appendix I for the detailed derivation.
One can show that Z2(s) is consistent with Z1(s) (16), when

r′1 → 0, r′2 → 0, and R′
p → ∞.

IV. ACTUATION MODEL

First, we derive the transfer function H(s) relating the free
tip displacement of an IPMC beam, w(L, s), to the actuation
voltage V (s), when the beam dynamics (inertia, damping, etc.)
is ignored. From (6) and (10), one obtains the generic expression
for the stress σ(x, z, s) generated due to actuation

σ(x, z, s) = 2α0c2(z, s) sinh (β(s)x). (28)

Note that c2(z, s) is available from the derivation of the
impedance model. When considering the surface resistance, the

bending moment M(z, s) is obtained as

M (z, s) =
∫ h

−h

xσ (x, z, s) W dx

=
∫ h

−h

2α0Wxc2(z, s) sinh (β(s)x)dx

= −2α0KWκe (γ (s) − tanh (γ (s)))φ (h, z, s)
(sγ (s) + K tanh (γ (s)))

.

(29)

From the linear beam theory [26]

∂2w (z, s)
∂z2 =

M (z, s)
Y I

= −2α0KWκe (γ (s) − tanh (γ (s)))φ (h, z, s)
Y I (sγ (s) + K tanh (γ (s)))

= −α0KWκe (γ (s) − tanh (γ (s)))
Y I (sγ (s) + K tanh (γ (s)))

×
V (s) − 2

∫ z

0 (r′1/W )is (τ, s) dτ

1 + r′2θ (s) /W
(30)

where the last equality follows from (20) and (51), Y is the
effective Young’s modulus of the IPMC, and I = 2/3Wh3 is
the moment of inertia of the IPMC. Solving (30) with boundary
conditions w(0, s) = 0 and w′(0, s) = 0, one can get

w (L, s) = −1
2

α0W

Y I

Kκe (γ (s) − tanh (γ (s)))
(γ (s) s + K tanh (γ (s)))

×
V (s) L2 − 4

∫ L

0

∫ z

0

∫ z ′

0 r′1/Wis (τ, s) dτ dz′ dz

1 + r′2θ (s) /W
.

Using (52) and (53), one can show

V (s) L2 − 4
∫ L

0

∫ z

0

∫ z ′

0

r′1
W

is (τ, s) dτ dz′ dz = 2L2X(s)V (s)

where X(s) is defined as

X (s)
�
= − 1 − sech (

√
B(s)L) − tanh (

√
B(s)L)

√
B (s)L

B (s) L2 .

(31)
One thus obtains the transfer function H(s) = w(L, s)/V (s).
Hence

H (s) = −L2α0W

2Y I

Kκe (γ (s) − tanh (γ (s)))
(γ (s) s + K tanh (γ (s)))

×
(

2X (s)
1 + r′2θ (s) /W

)
. (32)

H(s) for the case where the surface resistance is ignored can be
derived in an analogous and simpler manner, and it is omitted
here for brevity. Note that the blocking force output F (s) at the
tip can be derived via F (s) = w(L, s)K0 , where K0 = 3Y I/L3

denotes the spring constant of the beam.
Back to the free bending case, in order to accommodate the

vibration dynamics of the beam, we cascade G(s) to H(s),
as illustrated in Fig. 4. As the output of G(s) represents the
bending displacement (as that of H(s) does), G(s) will have a
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Fig. 4. Actuation model structure.

TABLE I
PARAMETERS FOR THE IMPEDANCE MODEL

dc gain of 1. Since the actuation bandwidth of an IPMC actuator
is relatively low (under 10 Hz), it often suffices to capture the
mechanical dynamics G(s) with a second-order system (first
vibration mode)

G (s) =
ω2

n

s2 + 2ξωns + ω2
n

(33)

where ωn is the natural frequency of the IPMC beam and ξ
is the damping ratio. The natural frequency ωn can be further
expressed in terms of the beam dimensions and mechanical
properties [27].

V. MODEL REDUCTION

An important motivation for deriving a transfer function-type
actuation model is its potential use for real-time feedback con-
trol. For practical implementation of feedback control design,
the model needs to be finite-dimensional, i.e., being a finite-
order, rational function of s. However, in the actuation model
derived earlier, H(s) is infinite-dimensional since it involves
nonrational functions including sinh (·), cosh(·), √·, etc. A
systematic approach to model reduction is Padé approxima-
tion [28], where one can approximate H(s) with a rational
function of specified order. However, the computation involved
is lengthy and the resulting coefficients for the reduced model
can be complex. Therefore, in this paper a much simpler, alter-
native approach is proposed for model reduction by exploiting
the knowledge of physical parameters and specific properties of
hyperbolic functions.

For ease of presentation, decompose H(s) as

H(s) = f(s) · g(s) · X(s)

where

f (s) = −L2α0W

2Y I

Kκe (γ (s) − tanh (γ (s)))
(γ (s) s + K tanh (γ (s)))

(34)

g (s) =
2

1 + r′2θ (s) /W
. (35)

Based on the physical parameters (see Table I in Section VI),
|γ(s)| � 10, and K � 106 , which allows one to make the ap-
proximation in the low-frequency range (<100 Hz)

tanh (γ(s)) ≈ 1 (36)

γ(s) ≈ h

√
K

d
=: γ. (37)

Fig. 5. Experimental setup.

With (36) and (37), one can simplify f(s), θ(s), and g(s) as

f (s) ≈ −L2α0W

2Y I

Kκe (γ − 1)
(γs + K)

(38)

θ (s) ≈ sWκeγ (s + K)
h (γs + K)

(39)

g(s) ≈ 2h(γs + K)
r′2γκes(s + K) + h(γs + K)

. (40)

The Taylor series expansions of sinh (a) and cosh(a) will be
used for approximating X(s)

X (s) ≈
1 +

∑m
n=0

(
a2n+2/(2n + 1)! − a2n/(2n)!

)∑m
n=0 a2n+2/(2n)!

(41)

with a =
√

B(s)L, for some finite integer m. When |s| is small
(low-frequency range) and 2r′1/R′

p is small (which is indeed the

case, see parameters in Table I), |
√

B(s)L| is small and (41)
approximates X(s) well with a small integer m. Note that only
even-degree terms appear in (41), and hence (41) is a function
of B(s)L2 instead of

√
B(s)L. Finally, since B(s) is a rational

function of θ(s) and θ(s) is approximated by a rational function
(39), one can obtain an approximation to X(s) by a rational
function of s.

Combining (38) and (40) and the approximation to X(s), one
gets a rational approximation to H(s). Since the mechanical dy-
namics G(s) is already rational, one obtains a finite-dimensional
actuation model. Note that a reduced model is still a physical
model. In particular, it is described in terms of fundamental
physical parameters, and is thus, geometrically scalable. This
represents a key difference from other low-order, black-box
models, in which case the parameters have no physical mean-
ings and one would have to reidentify the parameters empirically
for every actuator.

VI. EXPERIMENTAL MODEL VERIFICATION

A. Experimental Setup

Fig. 5 shows the experimental setup. An IPMC sample is
dipped in water and clamped at one end. The IPMC is sub-
ject to voltage excitation generated from the computer (through
dSPACE DS1104 and ControlDesk). A laser displacement sen-
sor (OADM 20I6441/S14F, Baumer Electric) with precision set
to±0.02 mm is used to measure the bending displacement w(t).
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The IPMC actuation current is measured with a current-amplifier
circuit.

B. Identification of Parameters in Impedance Model

Table I lists the parameters obtained for the impedance model.
Among them some are physical constants (gas constant R
and Faraday’s constant F ), some can be measured directly
(absolute temperature T , effective Young’s modulus Y [10],
actuator dimensions, surface resistance r1 in z direction and
through-polymer resistance Rp ), and the others need to be iden-
tified through curve-fitting. Since |C−∆V | 
 1 [18], we take
1 − C−∆V ≈ 1. The IPMC materials used in this paper were
obtained from Environmental Robots Inc., and the sample di-
mensions reported have an accuracy of ±0.5 mm in the length
and width directions and ±0.5 µm in the thickness direction.

A nonlinear fitting process is used to identify the diffusion
coefficient d, the anion concentration C−, the dielectric con-
stant κe , and the surface resistance density r′2 in x direction,
based upon the empirical impedance response of an IPMC ac-
tuator with dimensions 37.0 mm × 5.5 mm. In particular, the
impedance model Z2(j2πf) predicts the magnitude and phase
response of the actuator at frequency f , as a nonlinear function
of the parameters. The Matlab function fminsearch can be used
to find the parameters that minimize the squared error between
the empirical frequency response and the model prediction. The
identified parameters are listed in Table I, where the values of
d and C− are close to what were reported in the literature [20],
[25]. The value of κe , however, differs from those reported
in [20] and [25] by several orders of magnitude. This could
be attributed to different materials and experimental conditions
(e.g., in water versus in air). It should be noted that the value
of κe in the relevant literature was also obtained through model
fitting instead of direct physical measurement. It is thus of in-
terest to examine more direct measurement of these parameters
in the future.

For independent verification of the proposed model, the iden-
tified parameters will be used in predicting impedance behaviors
of other IPMC actuators with different dimensions, as will be
seen in Section VI-C.

C. Verification of Impedance Model

Impedance model verification will be conducted on two as-
pects. First, it will be shown that the model considering the
surface resistance is more accurate than the model ignoring the
resistance, by comparing them with the measured frequency
response of an IPMC actuator. Second, the geometric scalabil-
ity of the proposed model will be confirmed by the agreement
between model predictions and experimental results for IPMC
actuators with different dimensions.

1) Effect of Surface Resistance: In order to examine the dif-
ference between the impedance models Z1(s) and Z2(s), their
model parameters were identified separately through the non-
linear fitting process described in Section VI-B. The experimen-
tal data were obtained for an IPMC actuator with dimensions
37.0 mm × 5.5 mm × 0.360 mm. Fig. 6 compares the predicted
frequency response (both magnitude and phase) by each model

Fig. 6. Comparison of experimental impedance responses with model predic-
tions, with and without consideration of surface resistance.

TABLE II
DIMENSIONS OF THREE IPMC SAMPLES USED FOR VERIFICATION

OF MODEL SCALABILITY

with the measured frequency response. It is clear that the model
considering the surface resistance shows better agreement than
the one ignoring the resistance. This indicates that the model in-
corporating the surface resistance is more effective in capturing
the actuation dynamics of IPMC, and thus, it will be used for
the remainder of this paper.

2) Geometric Scalability of the Dynamic Model: Three sam-
ples with different dimensions (see Table II) were cut from one
IPMC sheet, and were labeled as Big, Slim, and Short for ease of
referencing. The model parameters were first identified for the
Slim sample, as discussed in Section VI-B. Without retuning,
these parameters (except geometric dimensions) were plugged
into (24), i.e., the model Z2(s), for predicting the frequency
response for the Big and Short samples.

Fig. 7 shows the Bode plots of the frequency responses for the
Slim and Big samples. It can be seen that for both samples, good
agreement between the model prediction and the experimental
data is achieved. Fig. 8 compares the frequency responses of the
Slim and Short samples. Reasonable match between the model
predictions and the empirical curves is again achieved for both
samples. These figures show that the model is geometrically
scalable.

D. Verification of Actuation Model

The actuation model has two modules serially connected, as
shown in Fig. 4. All parameters of H(s) have been identified
during identification of the impedance model except the stress–
charge coupling constant α0 . The natural frequency ωn and
the damping ratio ξ in G(s) can be identified based on the
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Fig. 7. Impedance model verification for the Big and Slim IPMC samples.

Fig. 8. Impedance model verification for the Slim and Short IPMC samples.

measurement of damped oscillations of the IPMC beam in the
passive state. For the Big sample, we obtained ωn = 28.9 rad/s,
and ξ = 0.1. Finally, α0 , which is simply a gain parameter in the
actuation model, was identified to be α0 = 0.129 J/C using the
magnitude of actuation response measured under a sinusoidal
voltage input.

The whole actuation model was verified in experiments
by applying sinusoidal actuation signals V (t) with amplitude
0.2 V and frequency from 0.02 to 20 Hz. The laser sensor was
used to measure the bending displacement w(t) at the free end
of the Big sample. The magnitude gain and phase shift from
the input V (s) to the output w(s) were obtained, which show
good agreement with the model prediction; see Fig. 9. Note that,
from the empirical Bode plot, the natural frequency of the IPMC
beam in the active state (under actuation) is about 30 rad/s, and
thus, slightly higher than that measured in the passive state. It
indicates that the effective stiffness of an IPMC is influenced by
the actuation input. However, such an effect is not significant

Fig. 9. Comparison of the measured actuation response with the proposed full
and reduced models for the Big sample.

Fig. 10. Schematic of the closed-loop control system for an IPMC actuator.

for relatively low actuation voltages, and a detailed discussion
on this would be beyond the scope of the current paper.

Model reduction was then carried out for H(s) using the
techniques discussed in Section V, where m = 2 was used.
This resulted in a seventh-order model Ĥ1(s) for approximating
H(s). The Matlab command reduce was further used to reduce
Ĥ1(s) to a second-order function Ĥ(s), which leads to a fourth-
order reduced model for the overall actuation response for the
Big sample

P (s) = Ĥ (s) · G (s) =
0.005s + 0.043
s2 + 78s + 204

· 835

s2 + 5.78s + 835
.

(42)
From Fig. 9, the reduced model also matches closely the empir-
ical response. It will be used for model-based controller design
in the next section.

VII. CONTROLLER-DESIGN EXAMPLE: MODEL-BASED

H∞ CONTROL

In this section, we provide an example to illustrate the use
of the proposed model in model-based controller design. While
other control design methodologies can be adopted, H∞ con-
trol has been chosen to accommodate multiple considerations,
including stability in the presence of uncertainty, attenuation of
the effect of sensing noise, and minimization of control effort.

Consider Fig. 10, where the IPMC is represented by some
nominal model P (s) with an additive uncertainty ∆a . Let P (s)
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Fig. 11. Modeling error and its bound Wa (s).

Fig. 12. The feedback connection of Ms (s) and ∆a (s).

be the reduced model (42) for the Big sample. Then ∆a repre-
sents the error between the full actuation model and P (s) plus
the unmodeled nonlinearities. The signals d1 and d2 denote the
actuation noise and the sensing noise, respectively. One is in-
terested in designing a controller K(s) that ensures closed-loop
stability and robust tracking performance in the presence of ∆a

and the noises d1 and d2 while taking into account the consumed
control effort. Standard H∞ control techniques [29] are used in
the following controller design.

To ensure the closed-loop stability in the presence of ∆a ,
one needs to first obtain the bound ‖∆a‖∞. Fig. 11 shows the
modeling error—the difference between the measured response
and P (s), as well as a bound Wa(s) on the error, where

Wa (s) =
0.15

s2 + 37s + 1318
. (43)

Then ‖∆a‖∞ ≤ ‖Wa (s)‖∞ = 1.65 × 10−4 .
The closed-loop system in Fig. 10 can be regarded as the

feedback connection of ∆a and Ms(s), as illustrated in Fig. 12.
Ms(s) can be obtained by computing the transfer function from
the output of ∆a to the input of ∆a in Fig. 10

Ms (s) =
K (s)

1 + P (s) K (s)
. (44)

From the small gain theorem [29], a sufficient condition for
internal stability is

‖Ms (s)‖∞ <
1

‖Wa (s)‖∞
= 6038. (45)

Fig. 13. Experimental and simulation results on tracking of IPMC actuator
under H∞ control.

To proceed with the controller design, define two artificial
outputs z1 and z2 as in Fig. 10, where the performance weight
We(s) and the control weight Wu (s) are chosen to be

We(s) =
s + 124

4(s + 3.1 × 10−3)
, Wu (s) =

100(s + 0.24)
s + 3.4 × 105 .

For guidelines on choosing these weight functions, see [29].
Now ignore the ∆a block, and design K(s) to minimize the
H∞ norm of the transfer function from {d1 , d2}T to {z1 , z2}T .
This would minimize the effect of the noises on the tracking
performance and the control effort. The resulting controller is

K (s) =
29527 (s + 2.569)

(s + 0.00314) (s + 4.952)
.

From (44), one can calculate ‖Ms (s)‖∞ = 5395, which satis-
fies the internal stability condition (45) under the uncertainty.

The designed H∞ controller was implemented for track-
ing control of the Big IPMC sample, where the reference r
(in millimeter) used was

r(t) = 0.133 sin (0.02πt) + 0.0665 sin (0.06πt).

The laser sensor for measuring the tip displacement has a noise
level of ±0.02 mm. For comparison purposes, a PI controller

K1(s) = 3000

(
1 +

1
s

)

was also implemented together with a low-pass filter

F (s) =
961

s2 + 62s + 961

for the output measurement. Note that a PID controller was
explored for IPMC actuators by Richardson et al. [30].

Fig. 13 shows the IPMC tracking performance under model-
based H∞ control and Fig. 14 shows the tracking performance
under PI control. Simulation results under both PI control and
H∞ control are also shown in the figures. It can be seen that
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Fig. 14. Experimental and simulation results on tracking of IPMC actuator
under PI control.

Fig. 15. Comparison of controller outputs under H∞ control and PI control.

the tracking error under H∞ control is almost at the level of
sensing noise, while the error under PI control is about twice as
large. The agreement between experimental and simulation re-
sults has further validated the reduced model. Fig. 15 compares
the controller output under H∞ control and PI control in the
experiments, which shows that the H∞ control requires lower
control effort. Therefore, controller design based on the reduced
model is effective.

VIII. CONCLUSION AND FUTURE WORK

In this paper, a dynamic model for IPMC actuators was de-
veloped by solving the physics-governing PDE analytically in
the Laplace domain. It is distinguished from existing modeling
work of IPMC actuators in that it is amenable to model reduction
and control design while capturing fundamental physics. The
modeling work bridges the traditional gap between the physics-
based perspective and the system-theoretic perspective on these
novel but sophisticated materials. The model also incorporates
the effect of surface electrode resistance in an integrative man-
ner. The compact, explicit, transfer-function representation of

the physics-based model can be reduced to low-order models for
real-time feedback control purposes. A number of experimental
results were presented to demonstrate the geometric scalability
of the model. Due to the physical nature of the model, the agree-
ment between model predictions and experimental results also
provides insight into the underlying actuation mechanisms of
IPMC materials. An H∞ controller based on the reduced low-
order model has been designed and implemented in real-time
tracking experiments. Experimental results have proven that the
proposed model is faithful and suitable for control design. Note
that while this paper is focused on a particular class of smart
materials, pursuing physics-based and control-oriented models
could be a valuable approach to the design and control of a
variety of materials and manufacturing systems [31].

Future work will be focused on two aspects. First, the pro-
posed actuation model will be extended to incorporate material
nonlinearities that become pronounced at large actuation levels.
The nonlinearities include nonlinear elasticity, hysteresis [32],
and the dependence of parameters (such as surface resistance)
on the curvature output [24]. The actuation model in this pa-
per was assumed to be a cascade of stress-generation module
H(s) and linear beam dynamics G(s). However, the two-way
coupling effects existing between the stress-generation module
and the beam dynamics module, as indicated by the curvature-
dependent electrical parameters, introduce challenging nonlin-
earities in modeling and control of IPMC materials that require
further study. The second direction of future work is the appli-
cation of the proposed modeling approach to control of micro-
manipulation [10] and biomimetic robots [9], [33]. There the
model has to be extended to account for force interactions with
external objects.

APPENDIX I

DERIVATION OF IMPEDANCE MODEL (24)

From (21) and (22)

ip (z, s) =
φ (h, z, s)

h

sWκeγ (s) (s + K)
(γ (s) s + K tanh (γ (s)))

=
(

V (s)
2

−
∫ z

0

r′1
W

is (τ, s) dτ− r′2
W

ip (z, s)
)

θ (s)

where the second equality is from (20) and (27). This results in

ip(z, s) =
(

V (s)
2

−
∫ z

0

r′1
W

is (τ, s) dτ

)
θ (s)

1 + r2θ (s)
. (46)

From (19) and (23), one obtains

ik (z, s) =
φ (h, z, s) − φ (−h, z, s) + 2ip(z, s)r′2/W

R′
p/W

=
2φ (h, z, s) + 2ip(z, s)r′2/W

R′
p/W

=
2W

R′
p

(
V (s)

2
−

∫ z

0

r′1
W

is (τ, s) dτ

)
(47)

where the last equality is from (20).
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Combining (18), (46), and (47), one gets

−∂is (z, s)
∂z

=
A (s) V (s)

2
− B (s)

∫ z

0
is (τ, s) dτ (48)

where A(s) and B(s) are as defined in (25) and (26).
Equation (48) is an integrodifferential equation for is . To

solve this equation, we introduce the unilateral Laplace trans-
form for functions of the length coordinate z. The new Laplace
variable will be denoted as p since s has already been used for
the transform of time functions. For instance, the transform of
is(z, s) will be defined as

Is(p, s)
�
=

∫ ∞

0
is(z, s)e−pz dz.

Now perform the Laplace transform with respect to the z vari-
able on both sides of (48). Using properties of Laplace trans-
forms, one gets

pIs(p, s) − is(0, s) = −A(s)V (s)
2

1
p

+ B(s)
Is(p, s)

p
. (49)

Solving for Is(p, s), one obtains

Is(p, s) =
p

p2 − B(s)
is(0, s) − 1

p2 − B(s)
A(s)V (s)

2
(50)

which can be rewritten through partial fraction expansion as

Is (p, s) =
A (s) V (s)

2

(
q1 (s)

p −
√

B (s)
+

q2 (s)
p +

√
B (s)

)

+ is (0, s)

(
0.5

p −
√

B (s)
+

0.5
p +

√
B (s)

)
(51)

with

q1(s) = − 1
2
√

B(s)
, q2(s) =

1
2
√

B(s)
.

The surface current is(z, s) is then obtained from (51) using the
inverse Laplace transform of Is(p, s)

is (z, s) = is (0, s) cosh (
√

B (s)z)

− A (s) V (s)
2
√

B (s)
sinh (

√
B (s)z). (52)

Using the boundary condition is(L, s) = 0, one obtains

is (0, s) =
V (s) A (s) tanh (

√
B (s)L)

2
√

B (s)
. (53)
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